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INTRODUCTION

The online supplementary materials complement the main text with more detailed analyses and discussion on certain topics. The
materials are arranged in a sequence similar to that in the main text for easy reference.

One of the earliest mathematical models of cholera dynamics was probably that of Capasso and Paveri-Fontana [1]. It was a model
of 2 ordinary differential equations, fit to data of the cholera outbreak in Bari, Italy in 1973. Codego explicitly acknowledged that
her model [2] was the extension of ref. [1].

Another early model of cholera transmission was that of Cvjetanovic, Grab and Uemura, as described in Chapter 5 (pages 65-79) of
their modeling “textbook”, Dynamics of acute bacterial diseases. Epidemiological models and their application in public health, which was a
supplement to the Bulletin of the World Health Organization in 1978 [3, 4]. Cvjetanovic et al.’s model consisted of 11 population
compartments (including two for deaths from cholera or other causes, which were redundant). It did not consist of a variable for
the bacterial concentration in water source. The route of cholera transmission modeled therein was “human-to-human”.
Cvjetanovic et al. studied the option of using vaccination, sanitation and chemoprophylaxis alone or in different combination (two
or three interventions) (assumptions see Table S1).

Table S1 Assumptions made for interventions modeled in the model by Cvjetanovic et al. [3, 4].

Interventions Assumptions

Vaccine Vaccination was cartied out 21 days after the seasonal rise in the force of infection and that 75% of the
population was immunized

Sanitation A 10-year sanitation program to construct privies would gradually reduce the force of infection by 50% in

10 years among the population provided with privies.
Chemoprophylaxis 10 close contacts per index case were treated, of whom 5 were carriers.

THE BASIC MODEL

Following the example of Grad et al. [5], I adopt Code¢o’s model [2] as the basis of our discussion, with some minor modifications:
dS/dt = —AS + ppN —paS

dI/de = AS — yI — (petpa)l

dR/dt = yI — paR

dB/dt = £ -8B

where L = B[B/(B+»)]and N=S +I1+R

Here, S, I and R refer to susceptible, infectious and recovered populations respectively. N is the total population. B refers to the
concentration of 1. cholerae in the water reservoir or supply. The parameters are explained as in Table S2:

TABLE S2 PARAMETERS OF THE BASIC MODEL

Parameter Meaning

Force of infection

“Contact rate” between the susceptible population with contaminated water

Concentration of 7. cholerae in the water reservoir that will make 50% of the susceptible population ill.
Recovery rate of infected people (1/y = duration of infectiousness)

X < R T >

Rate at which infectious people contribute . cholerae to the water reservoir.




[ Rate at which 1. cholerae are removed from the water reservoit.

Wb Birth rate
e Death rate due to cholera
W Death rate unrelated to cholera

THE FORCE OF INFECTION

The force of infection in our basic model is the per capita rate of infection experienced by susceptible individuals. It is defined as A
= B[B/(B+x)], with three parameters ot variables:

1. B: the “contact rate” between the susceptible population with contaminated water,
2. B: the level of contamination of the water supply (1. cholerae concentration), and

3. the concentration of /. cholerae at which the infection rate is 50% of the maximum infection rate, that is {.

When the concentration of bacteria in the water reservoir reaches the value of x, the force of infection equals half the “contact” rate
of susceptible people with contaminated water (When B = %, A = %2 8). When the bacterial concentration becomes very high, the
force of infection equals the “contact” rate of susceptible people with contaminated water (When B = o, A = B) (See Figure S1). Its
underlying assumption is a saturation effect of the bacteria concentration in the water reservoir. This is known as Monod equation
in microbiology [6] and is similar to the Michaelis-Menten enzyme kinetics of single substrate [7]. It implies that if the concentration
of 1. cholerae in the water reservoir is low, its reduction by half will lead to a larger reduction in the force of infection than if it is
high.

As it will be discussed in a later section of the paper, the formula for the force of infection will change if we include the so-called

“human-to-human” transmission in the model.

FIGURE S1 THE ASSUMED RELATIONSHIP BETWEEN BACTERIAL CONCENTRATION IN WATER (B) AND
THE FORCE OF INFECTION (A). IF B 2> 00, A = B. If B = », A = %2 B.

SUMMARY OF SELECTED MODELS

Table S3 provides a summary of selected studies on their model structure, interventions studied, their predecessor models from
which their models were derived and the main points of their papers.



TABLE S3

SUMMARY OF SELECTED CHOLERA TRANSMISSION DYNAMICS ORDINARY DIFFERENTIAL EQUATION MODELS

Paper Location Epidemic / Model structure Interventions studied Predecessor Main point(s) of the paper; comments.
Endemic model *

Human-to- Hyper- Asymptomatic ~ Geo-spatial Treatment ocv WASH

human infectious infected simulation

transmission cholera # compartment
Andrews & Haiti Epidemic No Yes Yes No Antibiotics ~ Yes Clean water Hartley et al. [9]; Compare effect of interventions. Model Port-au-Prince
Basu [§] Miller Neilan et and 10 departments separately.

al. [10]

Bertuzzo et al. Haiti Epidemic No No No Yes No Yes “Sanitation”  Bertuzzo et al. Compare effect of interventions. Spatial model of

2011 [11] § 2008 Haiti’s >500 local communities.

Codegoetal.[2] n/a Endemicand ~ No No No No No No No Capasso and Demonstrate the role of aquatic reservoir; model

Epidemic Paveri-Fontana forced seasonal oscillation of (a) contact tate or (b) per
[1] capita contamination rate. The basis for all subsequent
models

Date et al. [12] Haiti Epidemic No No No Yes No Yes No Hartley et al.[9]? The impact predicted by this model is less than the

and Abrams et other models. The model was buried in Date et al.’s

al. [13] Technical Appendix 2.

Hartley etal. [9] n/a Epidemic No Yes No No No No No Codego et al.[2] Demonstrate the importance of hyperinfectivity of .
cholerae and therefore, human-to-human transmission in
cholera transmission dynamics

King et al. [14] Bengal* Epidemic Yes No Yes No No No No Codego et al.[2] Stochastic model. Compate 4 models: 1. Basic model
with waning immunity; 2. ‘Inapparent’ infection
(infected but not infectious and become immune via
infection); 3. Seasonality in the environmental
reservoir; 4. Environmental-phage hypothesis.
‘Inapparent’ infection is important

Miller Neilan et~ Bangla- Endemic No Yes Yes No ORT & Yes “Sanitation”  King et al. [14] Different optimal (most cost-effective) control

al. [10] desh and Antibiotics § measures for different locations

India**
Mukandavire et Zimbabwe  Outbreaksin ~ Yes No No Model each No Yes No Hartley et al. [9] Estimated Ro for cholera across different provinces
al. [15] endemic area province (similar to Tien
separately and Earn [16])
Mukandavire et Haiti Epidemic Yes No No Model each No Yes No Mukandavire et Estimated Ro for cholera across different 'departments'
al. [17] 'depattment’ al. [15]
separately

Mwasa & n/a Epidemic No No No No ORT Yes Education, Compare different interventions. Include different

Tchuenche [18] Quarantine compartments for vaccinated, quarantined and treated
individuals, as well as those who received health
education regarding cholera prevention.

Rinaldo et al. Haiti Epidemic No No No Yes No No No Bertuzzo et al. Rainfall-driven seasonal variation; further development

[19] 2011 [11] of Bertuzzo et al. [11]

Tien & Earnt n/a Endemic Yes No No No No No No Codego et al.[2] Prove that the endemic equilibrium for the model with

[16] the ‘bacteria in water’ compartment is mathematically
globally stable.

Tien et al.[20] London, Endemic Yes No No No n/a n/a n/a Tien and Earn Herald wave as a result of a new strain; Seasonality

UK [16]
Tuite et al.[21] Haiti Epidemic No No No Yes No Yes Clean water ~ Tien and Earn Spatial model of Haiti’s 10 departments; compare

[16]

OCV with clean water

# It means that there is a separate compartment (and equation) for hyperinfective bacteria. “Predecessor model is the model based on which the curtent model under discussion is developed. § “Sanitation” in [11] actually meant

decreasing the probability of ingesting contaminated water or food (i.e. reducing ) via provision of “targeted clean water supply (through water purification systems or filters)” and health education on “hygiene and handling of water

and food”. This also applied to [10]. *Historic data: British East Indian province of Bengal, 1891 — 1940. **Bogra, Bangladesh and Calcutta, India. +Tien & Earn (2010) was a general model for waterborne pathogen that applies to

cholera. $19% century historic data. n/a: not applicable. OCV: Oral cholera vaccine. ORT: Oral rehydration treatment



MODEL MISSPECIFICATION

In the main text, we have mentioned the challenge of model mis-specification (what Grad et al. referred as “model mis-
specification” in their paper [5]), using the example of bactetial concentration vis-a-vis infectious dose. It has been pointed out
(by an anonymous reviewer) that there could be a way of conversation between the two: As long as we know the size of the
water reservoir and the amount of water consumed per day from that reservoir, we can estimate the infection rate (i.e. the rate
of acquiring an infectious dose). While we agree that it is plausible in theory, it is very difficult in practice to estimate the size
of the reservoir. More often than not, the reservoir is not well-defined. People may obtain their drinking water from multiple

sources. Routine epidemiological surveys usually do not generate such data.

PARAMETER UNCERTAINTY

To complement my discussion on parameter uncertainty in the main text, we discuss some of the sources for the values of
two parameters: duration of cholera infection and cholera life span in water reservoir. We also summarize the values of the
key parameters in selected models in Table S5.

DURATION OF CHOLERA INFECTION

A number of modeling papers, for example, ref. [2, 8, 9, 13], fixed the duration of cholera infection to 5 days. We selected two
and discussed their data sources here.

Hartley et al. [9] cited two references:

a) Tudor & Strato [22] (p. 313), actually referred to the International Health Regulations (1969, amended 1973) Atticle
62, “For the purposes of these Regulations the incubation period of cholera is five days”.

b) Hendrix’s review on cholera [23] (p. 1169): “In a study of 12 consecutive cholera patients in Dacca, Pakistan, in 1964,
Lindenbaum and his associates found that the average duration of diarrhea was 4.7 days (range 2.7 to 6.3) and that
the stool volume passed during hospitalization averaged 30.8 1. (range 5.2 to 69.1).” The data cited in Hendrix came
from Table V, on page 1082 of Lindenbaum et al. [24].

The incubation period and the disease period ate actually two different concepts. However, in most cholera models,
incubation period is not explicitly modeled. Individuals are assumed to become infectious immediately once they are infected.

Andrews and Basu [8] cited two references:

a) Rahaman et al. [25] was a double-blinded clinical trial of doxycycline and tetracycline on cholera patients. In this trial,
all participants, including those receiving the placebo, recovered within 3 to 4 days.

b) Levine et al. [26] was a cholera vaccine trial. Volunteers were observed for 96 hours (challenge studies) or 120 hours
(vaccination studies) before receiving a course of tetracycline for 5 days.

These two references did not necessary support a duration of cholera infection of 5 days as used in Andrews and Basu [8].

Nonetheless, the value of 5 days for the duration of cholera infection is consistent with the data from Lindembaum et al. [24].



CHOLERA LIFE SPAN IN WATER RESERVOIR

Complementary to the analysis of Grad et al. [5], we review here the sources for the values for cholera life span in water

reservoir used in some recent models:

(a) Abrams et al. [13], Andrews and Basu [8], and Chao et al. [27] all parameterized their model with a 30-day cholera life
span in water reservoir. They all cited Hartley et al. [9] as their source. In turn, Hartley et al. cited Kaper et al. [28]
and the International Health Regulations (1969, amended 1973), on p. 313 in Tudor and Strati [22], but we could not
identify the source in the latter reference.

(b) Bertuzzo et al. [11] cited one of their eatlier papers [29] for their value of 4.39 (=1/0.228) days. It was a calibrated
value in ref. [29].

(c) Tuite et al. [21] wrote that they derived their plausible range of 2.743 to 5.949 weeks — that is, 19.20 to 41.64 days —
from “studies of bacterial survival in sediments”, citing Hood et al. [30], which was a paper about isolation of vibrios
from oysters. We are not very sure if ref. [30] was the correct reference for the purpose of Tuite et al.. The mean life
span of vibrios was a parameter fitted to the Haitian cholera hospitalization data in Tuite et al. Their best fit value
was 5.910 weeks (41.37 days).

Actually, data of cholera life span in water reservoir had been published as far as in the 1960s. Thanks to the suggestions of an
anonymous reviewer, I hereby review some of these data for the convenience of future modeling endeavors. (Two of the

sources were cited and mentioned in the discussion of Grad et al. [5].)

In 7 samples of shallow well water of pH 7.6-8.8, Felsenfeld [31] observed that Classic vibrios (13 non-haemolytic Ogawa and
5 non-haemolytic Inaba strains) survived for 7.5 £ 1.9 days, while El Tor Ogawa vibrios survived for 19.3 = 5.1 days.

In an experiment in which water samples were inoculated with El Tor vibrios at a concentration of 1 x 10° vibrios per ml,
Pesigan et al. [32] (same data as in Pesigan [33]) found that vibrios survived in deep well-water sample from the Philippines for
13 days at room temperature (30°C - 32 °C) and for 4 days if exposed to sunlight (daily measurement). The same vibrios were
found surviving for 10 to 13 days in sea water sample at 30°C - 32 °C and for 10 to 11 days if exposed to sunlight (daily
measurement). In chlorinated tap water, vibrios survived for only one hour whether exposed to sunlight or not (hourly

measurement) [32].

Similarly, Pandit et al. [34] measured El Tor vibrio survival in water samples from India: (a) well water from Jatauli village,
Gurgagon district, Punjab, (b) well water from Bhopura village, Meerut district, Uttar Pradesh, and (c) tap water from the
municipal water supply of Delhi (kept for 48 hours to remove chlorine). The water samples were inoculated with vibrios at a
concentration of 1000 vibrios per ml. (mean, 992, standard derivation 15.2, range, 971-1020). It was found that a temperature
of 21°C, by day 8, vibrio concentration drops to 100 to 150 vibrios per ml. Vibrios survived for a period of (a) 18 days to (b)
51 days in well water, and (c) 12 hours in chlorine-removed tap water (measurements were made 4 times at intervals of 7 to 10
days). In the well water sample from (b) Bhopura village, vibrio concentration drops from 40 (day 19) to 20 (day 26) to 10 (day
39) per ml [34].

In another experiment, Pandit et al. [34] measured vibrio survival at an hourly basis, and observed the initial growth and
subsequent decay in Bhopura well water as in Table S4.

TABLE $4 VIABILITY OF EL TOR VIBRIOS (STRAIN 205) IN BHOPURA WELL WATER (ADAPTED FROM THE
FIGURE IN PANDIT ET AL. [34])

Hour 0 24 48 72 96 120 144 168

Number of vibrios 1000 4000 ~2000 ~750 ~500 ~300 ~200 ~200
per ml of water*

* I estimated the numbers from the figure in the paper, except for 0 hour and 24 hours that were clearly stated in the text of
ref. [34].



Concurring with Grad et al. [5], the uncertainty associated with the cholera life span, and therefore the bacterial decay rate, in
the water reservoir, is a source of uncertainty for cholera modeling outputs.

COMPARISON OF VALUES FOR KEY PARAMETERS ACROSS SELECTED MODELS

Furthermore, we expanded Table 1 and selected a few models that focus on the Haitian epidemic, and compared some of the
parameters they used with the Codego [2] (all converted into our notations) in Table S5. Please note that Codego chose her
parameters to illustrate her three hypothetical communities. She did perform sensitivity analyses on her parameters (See Table 3

of her paper).



TABLE S5 COMPARISON OF VALUES FOR KEY PARAMETERS ACROSS SELECTED MODELS

Sym  Parameters Range Codego [2] Abrams et al., Abrams Abrams Andrews and Bertuzzo et Chao et al. [27] Tuite et al. [21]
-bol found in Dec 15, 2010 etal,Jan etal, Basu [8] al. [11]
literature, [13] (also [12]) 28, 2011 Mar 4,
taken from [13] 2011 [13]
ref. [5]
B Rate of “contact” with 105 to 1 1 (chosen for 0.07 (Fitted to 0.0301 0.0255 Fitted to data 1.0. Same as 1. Fixed. Human-to-human transmission,
reservoir water (days illustrating data) (Fitted to (Fitted to [2] Plausible range: 0.01 to 0.1 (best fit,
D] epidemic and data) data) 0.1); waterborne transmission,
endemic cases); Plausible range: 0.789 to 0.945
0.5 for cholera- (best fit, 0.944)
free population.
1/y Duration of cholera 2.9 to 14 1/02=5 5 (cited [9] [29]) 5 5 5 (citing [25, 26]) 1/0.2=5. Latency period = 1 to  Plausible range: 2.376 to 3.013
infection (days) Same as [2] 5 days; Infectious (best fit, 2.913)
period = 7 to 14 days
1/8 Cholera life span in 3 to 41 1/033=3 30[12);1/0.7 [13]  1/0.033= 1/0.033 = 30, citing [9] 1/0.228, citing 30, citing [9] Plausible range: 2.743 to 5.949
water reservoir (days, 30 (citing 30 [29] weeks (best fit, 5.910) citing [30]
except otherwise [9, 16])
stated)
¢ Rate of water 0.01 to 10 10 Symptomatic T 1 n/a (they have rescaled their
contamination by patients: 1.3 * equation and therefore eliminate
humans, i.e. rate of 10! cells person! this variable, Cf. [106])
increase in . cholerae day;
concentration in the Asymptomatic
water reservoir (cells * patients: 1.3 * 108
mL"1* person! * day cells person! day
) 't
K Concentration of 10° to 10° 100 Population in Same as Same as Normal bacteria: T 70 (source unknown) This parameter does not exist in
cholera that yields department i / Dec 15 Dec 15 105 this model.

50% chance of
infection (cells / mL)

In(population
density in
department i at
the start of the
outbreak)

Hyper-infectious
bacteria:
105 /50 = 2000

Notes. tIn Bertuzzo et al. (2011) [11], they normalized their equation with respect to » and define a new parameter 6 = p/cx, given ¢ = W/N (a constant, using our notation, W = total volume of water; N =
total number of people). As our parameter £ = p/W = p/cN, therefore, p/c = €N, so 6 = EN/x. And given that in their model, Ro = B * 0 /[8 * (y + pc + pa)], using our own notations, and given the values:
= 1day"; 8 = 0.22 day'; y = 0.20 day!; pe = 0.004 day'; wa= 0.000046 day!, I calculate that 0 = 0.088882 day'. 1 The rates of bacterial shedding had to be divided by the size of water reservoir, W = 15L *

population * 365.



VACCINATION

As discussed in the main text, one of the ways to model vaccination is to model the successfully vaccinated individuals in a
separate compartment as in Figures 3 and 4. Mathematically, an equation can be added to the system (adapted from Andrews
and Basu [8]):

dV/dt = v (t) —eV(t) — pV (1)
where,

v(t): rate of individuals vaccinated per unit time;

T: percentage of vaccinated individuals that are successfully immunized (measure of direct effect of vaccines);
1/e: average duration for which the successfully vaccinated individuals remain immune (e.g. 3 years); and

p: death rate.

Here the successful immunization rate is calculated by multiplying the rate of individuals vaccinated per unit time (v(t)) with
the percentage of vaccinated individuals that are successfully immunized (t). The rate of individuals vaccinated can be varied
across time as intervention program expands. Immunity will wane and successfully immunized people will become susceptible
again at a rate of e. As an anonymous reviewer pointed out, the direct protection of a vaccine is jointly determined by t and e.
For example, Shanchol confers 66% direct protection for at least 3 years. This can happen if only 66% of the vaccinated are
successfully immunized and the immunity does not wane for 3 years. Alternatively, everyone that was vaccinated might be
successfully immunized but the immunity wanes so that over a period of 3 years, the cholera incidence among the vaccinated

is 66% lower than that of the unvaccinated. The reality may be somewhere in between.

There are published models that studied the potential impact of oral cholera vaccines (OCV) on the Haitian epidemic. Here
below we discuss the vaccination strategies modeled by some of these models and their choices of values of vaccine

effectiveness.



VACCINATION STRATEGY

Firstly, the vaccination strategies modeled by five papers on the Haitian epidemic, published in the first half of 2011, and their

implication for implementation are compared in Table S6. Some of the scenarios discussed would benefit from greater

consideration of implementation and logistics to develop more realistic strategies that could actually be implemented in Haiti.

TABLE S6
PAPERS

VACCINATION STRATEGIES MODELED FOR THE HAITIAN EPIDEMIC IN SELECTED

Vaccination strategies modeled

Implication for implementation

Andrews and
Basu [8]

Bertuzzo et al.

11

Chao et al. [27]

Date et al. [12]

Tuite et al. [21]

10% of the Haitian population received vaccination (about 2 million
doses = 1 million individuals vaccinated) over 1 month, beginning on
March 1, 2011.
(a) 300,000 doses (=150,000 people vaccinated) in Port-au-Prince
within one week, starting on January 1, 2011;
(b) 600,000 doses (=300,000 people vaccinated), distributed uniformly
across Haiti within one month, starting on November 1, 2010.
(a) the hypothetical pre-vaccination, before the outbreak, in Haiti;
For reactive vaccinations, vaccination began 21 days after the
beginning of the outbreak. 50,000 individuals were vaccinated per day
thereafter:
(b) reactive mass vaccination;
(c) reactive ring vaccination; and
(d) reactive high-exposure vaccination (all regions along any major
river in Haiti).
Use of 2-dose Dukarol for all eligible people (no prioritization)
Vaccination rate of 10,000 doses per day.
80% of those who received the first dose, receive the second dose 2
weeks after the first dose.
Distributing 1 million doses (vaccinating 500,000 individuals):

(@)  equal allocation to Haiti’s 10 departments;

(b)  allocation in proportion to the population size;

(c)  optimized allocation (maximum reduction in total number

of cases).

Comparing the results, if vaccination was completed from days 1, 30,
60, 90, 120, and 150 from 21 October 2010.

Implied vaccinating around 33,000 individuals per day

Strategy (a) and (b) implied over 20,000 and 10,000 individuals
to be vaccinated per day.

According to their results, among the three reactive strategies,
strategy (d) is the most efficient. However, this strategy would
be challenging to implement.

To vaccinate 50,000 individuals per day, it is the most
optimistic scenario among all 4 papers discussed in this table.

Vaccination rate of 10,000 doses per day (as an input to the
model).

The key result was that the eatlier the vaccination campaign
was completed, the more cases were averted. Optimization
would begin to make a difference when vaccination started
late.

The vaccination schedule under consideration imply
vaccinating per day:

Completion on Day 30: 16667

Completion on Day 60: 8333

Completion on Day 90: 5556

Completion on Day 120: 4167

Completion on Day 150: 3333

VACCINE EFFECTIVENESS

Oral cholera vaccine effectiveness empirical data are listed in Table S7.

TABLE S7

EMPIRICAL DATA OF ORAL CHOLERA VACCINE EFFECTIVENESS AGAINST SYMPTOMATIC
CHOLERA WITH CONFIRMED INFECTION.

Oral Cholera Vaccine effectiveness against symptomatic cholera with confirmed Location of the vaccine trial References
Vaccine infection, VEsp (Direct effect)

Dukarol 55% in 1 yeat Matlab, Bangladesh Ali et al. [35]
Dukarol 79% in 15 months Zanzibar, Tanzania Khatib et al. [36]
Shanchol 66% in 3 years Kolkata, India Sur et al. [37]
Shanchol 65% in 5 years Kolkata, India Bhattacharya et al.

[38]

10



Using the symbols as in Chao et al.[27], we summarize the vaccine effectiveness measures used in the five published models

on the Haitian epidemic in Table S8.

TABLE S8 VACCINE EFFECTIVENESS MEASURES IN FIVE SELECTED MODELS ON THE HAITIAN EPIDEMIC

Vaccine
Effectiveness to
prevent infection
from exposure

Vaccine Effectiveness to

prevent infected
individuals from being
symptomatic (VEp)

Vaccine Effectiveness
in reducing
infectiousness of
infectious individuals

Mean duration of
immunity

Notes

(VEs) (VEy
Andrews 67% [39, 40] (2-dose) 0% 0% 2 years [39, 40]; “All or none”: either 100%
and Basu [8] (sensitivity analysis: immune or susceptible
0.5 to 5 years)
Bertuzzo et Assumed to be 100% 0% 0% Longer than the Judgment based on their

al. [11] * (2-dose) model’s timeframe model structure.
(6 months)
Chao et al. Assumed to be 0, 64%, citing [41] (2-dose) 50%, citing [42] (2-dose) ~ Longer than the Vaccine effectiveness rises
[27] citing [41] t model’s timeframe from 0 to 50% of its full value
(6 months) for the first 7 days (mimic first
dose), and then from 50% to
100% from day 7 to day 21
(mimic second dose).
Date et al. 50% (1-dose) at 2 wk; 0% 0% - Immunity wanes according to
[12] 85% (2-dose) from an exponential decay
8.5d to 6mo; ~62% regression curve fit.
at Tyr; 58% at 2yr;
18% at 3yr
Tuite et al. 100% (2-dose) 0% 0% Longer than the There is a probability of
[21] model’s timeframe vaccination within a

(4 months)

department. But once an
individual is vaccinated
(assumed two doses), he is
immune. §

*Unless one get infected before they turn immune. 1So that the vaccine effectiveness against symptomatic cholera with confirmed infection, VEsp, = 1 — (1 —
VEs) * (1 — VEp) = 64% [41]. $There is no evidence that people vaccinated with one dose will have any protection. We suggest future models assume no
immunity until the time when the second dose is supposed to be administered. § While Tuite et al. mentioned a “50% effective vaccine”, citing the Cochrane
review for injected cholera vaccines [43], they do not take the less-than-perfect vaccine effectiveness into account.

Three out of the 5 papers under discussion use a more reasonable vaccine effectiveness estimate. Chao et al. [27] is the most
sophisticated one, separating the VE on susceptibility-becoming symptomatic and the VE on reducing infectiousness. We
have to emphasize the point that to assume the direct VE as 100% (as in ref. [11, 21]) will greatly over-estimate the impact of
vaccination.

Bertuzzo et al. [11] created an extra vatiable / compartment for susceptible individuals who have received two doses of OCV
but have not yet developed immunity and therefore are still susceptible to infection. Therefore, they created two input
parameters: vaccination rate (number of vaccine doses administered per day), which was a logistical parameter, and a rate of
vaccinated individuals becoming immune. While they acknowledged that “full immunity requires 7-10 days after the second
dose to build up”, they used an estimation of a rate of 0.5 day! for those individuals who had received two doses of vaccine to
become immune. Perhaps 1/7 to 1/10 would be a bettet input. Given the very short period of time an individual stays in that
compartment, its impact may not be significant. More importantly, based on their model structure, we can tell that they
assume neatly everyone who is vaccinated will turn immune from infection eventually, except those who are vaccinated, and
then infected, before they turn immune. We know that cholera vaccine effectiveness is less than 100%. This may not be a
correct assumption. This may be compensated mathematically by the fact that they allow vaccinated individuals to remain
susceptible for a while (a mean of 2 days).
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WATER, SANITATION AND HYGIENE

Water, sanitation and hygiene can be represented in the basic model as follows:

dB/dt = (1-san)*£*I — (1+sou)*8*B

A = (1-h)*B*(1-p)*B/ [(1-p) B+

where,

san: sanitation interventions and health promotion of their utilization and hand hygiene
sou: treatment of water at source (e.g. chlorination of piped water)

p: point-of-use water purification (via boiling, chlorination or filters)

h: using alternative source of drinking water

However, one potential critique of this proposal is that we usually do not measure the rate of bacterial removal from water.

For example, we may measure the compliance of point-of-use chlorination water purification by measuring the chlorine
residual in the drinking water. Those data are usually given in binary form (below or above a threshold that is considered “safe”
water).

ASYMPTOMATIC INFECTIONS

Bertuzzo et al. [11] handled the issue of underreporting by assuming that only 5% of cholera cases reported to any healthcare
facilities. This was estimated by assuming that 25% of infected individuals were symptomatic, among which 20% developed
acute diarrhea and required medical attention. They included the underreporting scaling factor in their uncertainty analysis.
(See Auxiliary materials of ref. [11]).

In order to explain the rapid reduction from an estimated Ro of 2.78 or 2.90 at the beginning of the outbreak to an estimated
effective reproduction number (R¢) of 0.5 after three months, Tuite et al. [21] concluded that it was the result of the public
health response in the eatly phase of the epidemic. Rinaldo et al. [44] criticized Tuite et al. for not including asymptomatic
infections in their model and therefore over-estimated the impact of the interventions (a 6-fold decrease in R.). Instead, they
proposed an alternative explanation by taking asymptomatic infections (and subsequent depletion of the susceptible
population) into account. Tuite et al. countered by stating that Rinaldo et al. confused the two distinct concepts of Rp and Re
and that the observed surge in cholera incidence in May 2011 was a proof that the susceptible population has not yet been
depleted. (Rinaldo et al. argued that their explanation “does not require reproduction numbers to decrease with time”[44];
however, Tuite et al. did confuse the two concepts themselves when they wrote “a decrease in RO by an average of 1.8% per
day” in their original paper [21].) Tuite et al. could have included a scaling factor to take into account the underreporting of
cases (asymptomatic cases and those symptomatic case who were unable to reach healthcare facilities to be “reported”) as they
fit their modeling output to observed data. But this would probably give them an even higher Ro. But more importantly, the
size of the reduction in effective reproduction number might not be as big as Tuite et al. originally reported[21], and this
would make the estimates closer towards their estimated effect of interventions. Likewise, while there must have been a
reasonable size of population who had asymptomatic infection and became immune to cholera, herd immunity through
infection would be unlikely to be the sole explanation for the reduction of the effective reproduction number. Apparently, the
provision of clean water and prompt treatment of symptomatic cases greatly reduced cholera incidence in some camps of
displaced populations. Rinaldo et al. [44] might have overstated the impact of asymptomatic infection (the compartment of
susceptible was “depleted”). Apparently, the surge in incidence in mid-2011 was recognized by a later paper of theirs [19].

In summary, underreporting of cases, including asymptomatic cases, should be taken into account when fitting modeling
outputs to observed data (even if the model does not have a distinct compartment for asymptomatic cases). Nonetheless, the
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reduction in effective reproduction number during the first three months of the epidemic in Haiti cannot be solely explained

by the depletion of susceptible through infection.

HYPERINFECTIOUS BACTERIA AND “HUMAN-TO-HUMAN”
TRANSMISSION

Hartley et al. [9] was the first to introduce hyperinfectious bacteria into a cholera model. They introduced a variable for
hyperinfectious 1. cholerae (By) with this equation:

dBH/dt = ﬂ — XBH
where y is the rate that By lose their hyperinfectivity and become normal bacteria.

The force of infection is formulated as such [9]:

A= Bw[Br/Br+»)] + Bu[Bu/Butx)]

However, the hyperinfectious state is very brief (5 to 24 hours) while the dynamics of infection and recovery is in a scale of
days. As Pascual et al. [45] explained, the number of infectious individuals (I) will essentially be a ‘constant’ to By within their
short ‘lifespan’. They will be in a quasi-equilibrium where we can track By with 1. Therefore, instead of having a separate
variable, By, we can model the impact of hyperinfectious bacteria as if it is “human-to-human” transmission, by adding a

transmission term to the composition of the force of infection, e.g.:

A= Bu[B/B+0)] + Bl

where the transmission coefficients (“contact” rate) of water-borne and “human-to-human” transmission are represented as
Bw and Bn respectively. The “human-to-human” transmission component in the force of infection equation is proportional to

the number of infected individuals (at a particular time, t). It varies with incidence.

Behind the equation is the ‘random mixing’ assumption, which is similar to the mass action principle in chemistry. As
susceptible people are infected at a rate of AS, the “human-to-human” transmission term BplS implies that in a homogeneous

population, infected and susceptible populations are randomly mixed, and the per capita rate of transmission is Bp.

CHOICE OF PARAMETERS

Here I discussed the choice of the parameters related to hyperinfectivity in the context of the original experiments from which

the parameters were drawn.

Hartley et al. [9] used a scaling factor of 700 for hyperinfectivity, i.e. the infectious dose of 50% chance of infection (ICsp) of
hyperinfectious 1. cholerae is 700 times of that for normal 1. cholerae. They cited the original experimental work of Merrell et al.
[46]. However, Merrell et al.’s paper notes, “As shown in Fig. 1a [of their paper], 1. cholerae shed from the human
gastrointestinal tract (human-shed) showed greatly enhanced infectivity, out-competing the in vitro-grown strain by as much
as 700-fold” (bold underlined emphasis mine). In other words, the maximum is 700-fold. By visual inspection of Figure 1a of
Merrell et al., the geometric means for experiment 1, 2 and 3, were ~10, 10-20, ~200, respectively. It may not be prudent to

fix the scaling factor to the maximum value of 700. A sensitivity analysis on this scaling factor should be performed and its
results presented, but this was not found in Hartley et al. [9].
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The scaling factor of 50 in Andrews and Basu’s [8] and that of 100 in Chao et al. [27] for hyperinfectivity are more in line with
both ref. [46] and [47]. In Alam et al.’s [47] mouse-passage model of hyperinfectious 1. cholerae, the 1Cso for mouse-passaged
bacteria and that for bacteria grown in vitro are around 50 and 1000 colony-forming units (c.f.u.) respectively (in this case,
percentage of mice infected after 24 hours, see Figure 3 of ref. [47]). And the competitive index from competition assays
infant mice (as in Figures 1 and 2 of ref. [47]), hyperinfectious bacteria are either slightly higher or lower than 100-fold more
infectious than non-hyperinfectious bacteria. Therefore, Andrews and Basu used a more conservative value that are more in
line with experimental results than that of Hartley et al. [9].

With regard to the duration of hyperinfectious state, Merrell et al. [46] presented experimental results that after 5 hours in the
environment, bacteria freshly shed by humans did exist in their hyperinfectious state but not after 18 hours. Alam et al.
showed that mouse-passaged bacteria showed no difference in colonization of mice’s small intestines, compared with those
grown in vitro, 24 hours post-inoculation. However, they showed that 5 hours after inoculation, mouse-passaged bacteria
showed more rapid replication than those grown in vitro. Therefore, one could say that Andrews and Basu [8] used the
longest possible duration supported by experiment (24 hours), while Hartley et al. [9] used the more conservative value of 5
hours.

SPATIAL ELEMENTS: HUMAN MOVEMENT & RIVER NETWORK

In all the models introduced in the above sections, the element of time is paramount, as all variables vary with time. However,
there are no spatial elements in these models. In this section, I shall briefly discuss some examples of models that handle these

issues.

Human movement is important in cholera transmission, as infected individuals shed bacteria into the environment through
which they travel. One way to incorporate this element is to include in the force of infection term of region 7 different
transmission terms that represent transmission from region j to Z Such terms can be a function of the population sizes of the
regions and their distance between them. An example is a paper by Tuite et al. [21] in which the 10 departments of Haiti were
modeled explicitly. A similar approach was adopted by Bertuzzo et al. [11] but with a greater geographical resolution (>500

local communities, at the fourth administrative level in Haiti).

River networks contribute to cholera transmission. As illustrated in the first week of the cholera outbreak in Haiti in October

2010, an outbreak that began in the upper Arbonite River spread along the river downstream to the towns at the estuary.

Recently, modelers combine both elements of human movement and river networks into a single model and expanded our

understanding of spatial elements in cholera epidemics.

An example is an agent-based model by Chao et al. [27] (Figure S2), where they group individuals into households, and
households into communities (of roughly 500 people each). They explicitly model daily commuting for workers between
communities in Haiti. Two modes of long-distance travel were included, namely highway travel and non-highway travel. They
also explicitly modeled cholera transmission via network by making the rivers as a second environment reservoir. Infectious
individuals in one community shed bacteria into their own community local water source as well as to the river where the

bacteria were transported downstream (with some loss) to another community.
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FIGURE S2 A CARTOON OF CHOLERA TRANSMISSION VIA RIVER FLOW (ADAPTING THE IDEA FROM
CHAO ET AL., 2011[27]) S: SUSCEPTIBLE; I: INFECTED; R: RECOVERED; B: BACTERIA IN LOCAL WATER
SOURCE; BR: BACTERIA IN RIVER

Rinaldo and his research group have produced a stream of recent articles that tackle river network. Based on Bertuzzo et al.
[11], Rinaldo et al. combined human movement, river flow and seasonal rainfall data of Haiti into their model and fit their
model to Haiti epidemic data and made prediction of the incidence curve up to January 2014 [19]. Mari et al. studied the
interaction between human mobility with waterways and sanitation coverage in KwaZulu-Natal, South Africa [48].

CLIMATE & SEASONALITY

Seasonality is known to play a role in cholera incidence pattern. Climatic factors, like rainfall patterns and El Nino-Southern

Oscillation [49, 50], ate known as drivers of cholera seasonal patterns.

Pascual et al. [51] proposed an ODE model to study how rainfall (and water volume in the rivers) affects cholera dynamics.
They replaced the equation for bacterial concentration in water (as in the basic model by Codego [2]) with 2 equations: one for
water volume and the other for “fomites” or bacterial abundance. The equations were written so that when water volumes are
low, the force of infection will be higher than when they are high. The bacterial concentration can be changed directly by
climatic factors without affecting its growth rate [51]. Seasonal rainfall patterns have been observed to correlate with the
timing of cholera outbreaks in endemic areas. This component was added by Rinaldo et al. to their model [19]. Reiner et al.

used a multidimensional inhomogeneous Markov chain model to study both the climatic effect and spatial element [52].

Tien et al. used sinusoidal forcing in the “contact rate” between susceptible population and contaminated water to model
seasonality in cholera transmission as observed in 19% century London [20].

Temporary immunity after infection as a factor has also been proposed. A semi-parametric method to fit a model of two
difference equations (Susceptible and Infected individuals) to historic incidence data taking into account temporary immunity
and seasonality have been developed by Koelle and colleagues [53, 54].
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CHOLERA MODELING APPLIED IN AN OUTBREAK SCENARIO:

ABRAMS ET AL. AS AN EXAMPLE

To illustrate the considerations when one constructs a model for a specific purpose, we use the model written by Joseph

Abrams and colleagues [13] as an example. Among all published models on the Haitian cholera outbreak, Abrams et al.’s

model may have the highest policy relevance, as modeling outputs were conveyed directly to policy-makers and non-

governmental organizations in real time during the outbreak. We approach this by looking at some of the features of the

model structure, presenting the reason for their inclusion or exclusion by Abrams et al., and comments on their choice in

Table S8. Figure S3 provides an illustration of the model structure.

TABLE S8 SELECTED COMPONENTS INCLUDED OR EXCLUDED IN THE CDC MODEL BY ABRAMS ET AL.[13]

Components Incorporated Reason given by Abrams and Comments
(Yes/No) colleagues

Only a fraction of the Total population being Yes “Not all people are expected to be What the model does is to stratify

Susceptible uniformly exposed to the cholera the population into 2 groups, one
epidemic; people who have access to can be exposed and one cannot.
clean water and safe sanitation, or are Susceptible people are being moved
geographically isolated from the from the latter to the former at a
outbreak may be effectively protected rate. This necessitates an additional
from infection”. [13] parameter that depends on model

fit. No data other than the
incidence data are used to support
the value of the parameter.

Two “Removed” compartments — R1 and R2 Yes Population recovered from cholera This is a strategy to alleviate the
would remain “fully immune for 6 problem of having an exponential
months before slowly losing immunity at  declining flow of people losing
the same rate as measured in a large-scale  their immunity. (The equation
vaccine study” [13] represented by the arrow will imply

exponential “decay”)

Seasonal changes No “There is no recent expetience with To keep the model simple,
cholera in the Catibbean” [13] seasonality (especially rainfall

pattern) is left out. Therefore it will
not be possible to model the
summer 2011 and summer 2012
peaks of cholera incidence.

Spatial component (department-specific); e.g. Yes Used an eatly fit values, without No data support their values apart

geographical connected ness: infected people providing reason why they include this from fitting to the incidence data.

in a neighbouring department can contaminate component.

water in a department; separate “water

initiation parametet” for depattments affected

later in the epidemic

Different “kappa” for different departments: Yes “Early model testing showed that rates Abrams et al. have access to Haitian

population/In(density)

of disease spread within departments
were positively associated with
population density, and scaling water
infectivity by log population density
[In(dens;)] was shown to improve model
fit.”

data, broken down for Port-au-
Prince and the 10 departments.
Therefore they can fit the model to
the data by 11 geographical units.

As illustrated in Figure S3, in each department (Haiti’s political division), there ate 5 population compartments (black boxes)

and a compartment for bacterial concentration in drinking water soutces (blue oval). Different from the models that were
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previously introduced in this paper, Abrams et al. created a “Total population” compartment so that they could adjust the
fraction of population that was at risk of infection along the time line as cholera spreads from one department to another
(spatial element). They also incorporated two Removed compartments to incorporate a delay in waning immunity. Abrams et
al.’s model incorporated the spatial heterogeneity of the outbreak by incorporating the bacterial shedding of infectious
population into other compartments (population movement) and the transfer of bacteria from one compartment to another
(hydraulic movement).

Abrams et al.’s model was a difference equation model — instead of differential equations. It was written in R, an open-source
free software, that is readily available.

As Abrams et al. explained [13], there is collinearity between certain parameters. Therefore they fixed some of them at values
that were fitted from early iterations of the model. However, their paper avoided answering an important question: why
certain variables (“compartments”) or parameters are needed at the first place. While introducing new structures to the model
may increase the fit to the data, the inclusion of parameters that are not supported by empirical data (apart from fitting to the
incidence data) may create unnecessary uncertainty for the model. The fact that there is much collinearity between parameters
suggests the possibility of redundancy in the model.

By deploying their model, Abrams et al. provided timely estimates to policy-makers and other stakeholders. In this sense, they
did a successful job despite all the caveats of their model.

FIGURE S3 THE ABRAMS ET AL.’S MODEL (ADAPTED FROM REF.[13]). NOTE: A DEPARTMENT IN HAITI
REFERS TO AN ADMINISTRATIVE AREA SIMILAR TO A PROVINCE IN OTHER COUNTRIES.
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